torsion units for some projected special linear groups
نویسندگان
چکیده
in this paper, we investigate the zassenhaus conjecture for $psl(4,3)$ and $psl(5,2)$. consequently, we prove that the prime graph question is true for both groups.
منابع مشابه
Some Representations of Special Linear Groups
Mat r x ( F q ) o f a l l r b y r m a t r i c e s o v e r F q , b y C t h e g r o u p G L t i ( F q ) o f t h e u n i t s of M, and by S the special linear subgroup SL , (F q ) o f C . F o r a n a r b i t r a r y field F containing F q , l e t U s t a n d f o r t h e ( c o m m u t a t i v e ) p o l y n o m i a l a l g e b r a F[xl, , x r ] , a n d c o n s i d e r U g r a d e d a s u s u a l : U...
متن کاملCharacterization of some projective special linear groups in dimension four by their orders and degree patterns
Let $G$ be a finite group. The degree pattern of $G$ denoted by $D(G)$ is defined as follows: If $pi(G)={p_{1},p_{2},...,p_{k}}$ such that $p_{1}
متن کاملSome Uniserial Representations of Certain Special Linear Groups
In an earlier paper a construction was given for an infinite-dimensional uniserial module over Q for SL(2,Z) whose composition factors are all isomorphic to the standard (two-dimensional) module. In this note we consider generalizations of this construction to other composition factors and to other rings of algebraic integers.
متن کاملTHE RATIONAL CHARACTER TABLE OF SPECIAL LINEAR GROUPS
In this paper we will give the character table of the irreducible rational representations of G=SL (2, q) where q= , p prime, n>O, by using the character table and the Schur indices of SL(2,q).
متن کاملNSE characterization of some linear groups
For a finite group $G$, let $nse(G)={m_kmid kinpi_e(G)}$, where $m_k$ is the number of elements of order $k$ in $G$ and $pi_{e}(G)$ is the set of element orders of $G$. In this paper, we prove that $Gcong L_m(2)$ if and only if $pmid |G|$ and $nse(G)=nse(L_m(2))$, where $min {n,n+1}$ and $2^n-1=p$ is a prime number.
متن کاملA Recognition Algorithm for Special Linear Groups
At the 1988 Oberwolfach Computational Group Theory meeting, Joachim Neubiiser asked for an efficient algorithm to decide whether the subgroup of the general linear group GL(d, q) generated by a given set X of non-singular d X d matrices over a finite field ¥q contains the special linear group SL(rf, q). Amplifying the problem he said he would be happy to have a program that could be used for ge...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
international journal of group theoryناشر: university of isfahan
ISSN 2251-7650
دوره
شماره Articles in Press 2015
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023