torsion units for some projected special linear groups

نویسندگان

joe gildea

چکیده

in this paper, we investigate the zassenhaus conjecture for $psl(4,3)$ and $psl(5,2)$. consequently, we prove that the prime graph question is true for both groups.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Representations of Special Linear Groups

Mat r x ( F q ) o f a l l r b y r m a t r i c e s o v e r F q , b y C t h e g r o u p G L t i ( F q ) o f t h e u n i t s of M, and by S the special linear subgroup SL , (F q ) o f C . F o r a n a r b i t r a r y field F containing F q , l e t U s t a n d f o r t h e ( c o m m u t a t i v e ) p o l y n o m i a l a l g e b r a F[xl, , x r ] , a n d c o n s i d e r U g r a d e d a s u s u a l : U...

متن کامل

Characterization of some projective special linear groups in dimension four by their orders and degree patterns

‎Let $G$ be a finite group‎. ‎The degree pattern of $G$ denoted by‎ ‎$D(G)$ is defined as follows‎: ‎If $pi(G)={p_{1},p_{2},...,p_{k}}$ such that‎ ‎$p_{1}

متن کامل

Some Uniserial Representations of Certain Special Linear Groups

In an earlier paper a construction was given for an infinite-dimensional uniserial module over Q for SL(2,Z) whose composition factors are all isomorphic to the standard (two-dimensional) module. In this note we consider generalizations of this construction to other composition factors and to other rings of algebraic integers.

متن کامل

THE RATIONAL CHARACTER TABLE OF SPECIAL LINEAR GROUPS

In this paper we will give the character table of the irreducible rational representations of G=SL (2, q) where q= , p prime, n>O, by using the character table and the Schur indices of SL(2,q).

متن کامل

NSE characterization of some linear groups

‎For a finite group $G$‎, ‎let $nse(G)={m_kmid kinpi_e(G)}$‎, ‎where $m_k$ is the number of elements of order $k$ in $G$‎ ‎and $pi_{e}(G)$ is the set of element orders of $G$‎. ‎In this paper‎, ‎we prove that $Gcong L_m(2)$ if and only if $pmid |G|$ and $nse(G)=nse(L_m(2))$‎, ‎where $min {n,n+1}$ and $2^n-1=p$ is a prime number.

متن کامل

A Recognition Algorithm for Special Linear Groups

At the 1988 Oberwolfach Computational Group Theory meeting, Joachim Neubiiser asked for an efficient algorithm to decide whether the subgroup of the general linear group GL(d, q) generated by a given set X of non-singular d X d matrices over a finite field ¥q contains the special linear group SL(rf, q). Amplifying the problem he said he would be happy to have a program that could be used for ge...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
international journal of group theory

ناشر: university of isfahan

ISSN 2251-7650

دوره

شماره Articles in Press 2015

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023